

VOLCANIC ASH EDR

NOAA/NESDIS/STAR

608-263-9597; Mike.Pavolonis@noaa.gov

Mike Pavolonis (STAR)

Justin Sieglaff (UW-CIMSS)

Jason Brunner (UW-CIMSS)

Outline

- Cal/Val Team Members
- Algorithm Overview
- S-NPP/N-20 Product(s) Performance
- Major Risks/Issues and Mitigation
- Milestones and Deliverables
- Future Plans/Improvements
- Summary

Cal/Val Team Members

PI	Organization	Team Members	Roles and Responsibilities
Mike Pavolonis	NOAA/NESDIS/ STAR	Justin Sieglaff (UW-CIMSS), Jason Brunner (UW-CIMSS)	EDR algorithm development, refinement, validation, product review and delivery

Algorithm Overview

Instrument: VIIRS

Channels: 8.5 (M14), 11 (M15), and 12 µm (M16)

Ancillary data: GFS and OISST

Ash detection:

differential absorption (Pavolonis 2010)

Ash properties: optimal estimation (Pavolonis et al., 2011)

Algorithm is the same as the baseline GOES-R algorithm except it does not utilize IR absorption channels

S-NPP/N-20 Product(s) Overview

Product(s) Performance Summary

Product	L1RDS APU Thresholds	S-NPP Performance	N-20 Performance
Ash Top Height	3 km	-1.9 km	~ 2 km (preliminary)
Ash Mass Loading	2 tons/km ²	1.1 tons/km ²	~1.5 tons/km ²

Wind correlation, comparisons to space-based lidar, and comparisons to other well characterized satellite products are the primary validation techniques

Major Risks/Issues and Mitigation

Risk/Issue	Description	Impact	Action/Mitigation
N20 Product Availability	NOAA-20 products are currently generated in the Integration and Testing string of NDE and are often unavailable (high impact on volcanic ash since this significantly reduces the number of validation opportunities).	High	Possible delay of provisional review until enough volcanic ash cases, sufficient for validation analysis, are collected
Underutilization of JPSS	The JPSS NDE algorithm only exploits a fraction of the JPSS capabilities. More sophisticated multi-sensor approaches have been, and continue to be, developed	Medium	A new PGRR initiative will develop, test, and evaluate a multi-sensor approach

Milestones and Deliverables

• FY19 Milestones/Deliverables

Task	Description	Deliverables	Scheduled Date
Development	Pursue algorithm enhancements	Cost benefit analysis	Sep 2019
Integration & Testing	Prepare for NOAA-21 and S-NPP and NOAA-20 updates	Updated algorithm code, NOAA-21 LUT	Sep 2019
Calibration & Validation	Comparison of volcanic ash products with validation data	Accuracy statistics	Sep 2019
Maintenance	Refine thresholds and LUTs for S-NPP and NOAA-20 as needed	Updated code and ATBD	Sep 2019
Long-term monitoring	Develop long-term monitoring tools	A tool for alerting when product anomalies are detected	Sep 2019

Future Plans/Improvements

 Volcanic ash products should be generated using a holistic approach that integrates all relevant components of the volcanic hazard problem, using all relevant measurements (JPSS and non-JPSS).

User Needs Major Aviation Hazard Operational Mandate 150°E VAAC **Key Operational Questions:** 1). Has an eruption occurred? 2). Where is the ash/SO₂ TOULOUSE now?

4). Where will the ash/SO₂ be in the future?

3). How much ash/SO₂ is

present?

75°E

163°E

Volcanic Hazards Initiative

Core Research Team: Mike Pavolonis (PI, NOAA/STAR), Simon Carn (Michigan Tech), Alice Crawford (NOAA/ARL), Christoph Kern (USGS), Taryn Lopez (University of Alaska - Fairbanks), Dave Schneider (USGS), Ariel Stein (NOAA/ARL)

Core User Team: Jamie Kibler (NOAA – Washington VAAC), Christina Neal (USGS), Jeff Osiensky (NWS – Anchorage VAAC), Dave Schneider (USGS), Bill Ward (NWS PRH)

Key Operational Questions:

- 1). Has an eruption occurred?
 - Volcanic eruption alerts for ash and SO₂ emissions
- 2). Where is the ash/SO₂ now?
 - Highly skilled automated volcanic ash and SO₂ detection and tracking
- 3). How much ash/SO₂ is present?
 - Retrievals of ash height, ash loading, ash effective radius, dominant mineral composition, SO₂ height, and SO₂ loading
- 4). Where will the ash/SO₂ be in the future?
 - Integration of satellite products and HYSPLIT (dispersion model)

Volcanic Hazards Initiative

OMPS: SO₂ detection and characterization, ash in optically thick clouds (SZA limited and course spatial resolution)

GEO

Color Imagery (12-11µm, 11-8.5µm, 11µm)

CrIS: Ash detection and characterization (including mineral composition), SO₂ detection and characterization (course spatial resolution)

VIIRS: Ash and SO₂ detection and characterization, source of imagery (limited accuracy for ash and SO₂ properties)

Volcanic Cloud Alert Report Date: 2018-01-05 Time: 03:36:00 Production Date and Time: 2018-01-05 05:17:35 UTC Primary Instrument: NPP VIIRS More details ▼

Eruption Alerting

VOLcanic Cloud Analysis Toolkit (VOLCAT)

1). Unrest Alerts

2). Eruption Alerts

3). Volcanic Cloud Tracking

4). Volcanic Cloud Characterization

Figure Color Imagery 12-11 am 11-8 sum, 11 mm.

With Wholese Imagery and Anti-Dard Cloud Height

If Wholese Imagery and Anti-Dard Effective Finals:

If Wholese Imagery and Anti-Dard Cloud Height

If Wholese Imagery and Anti-D

5). Dispersion Forecasting

User Feedback & Summary

- No two volcanic clouds are alike and non-volcanic features can mimic the spectral signature of ash and SO₂
- Thus, volcanic cloud detection and characterization is extremely challenging
- Present day satellite measurements (LEO and GEO combined) are capable of addressing the volcanic cloud problem, but only with highly sophisticated multisensor algorithms
- Users have found significantly greater value in the VOLCAT products
- The NDE products will continue to be validated and maintained while the integrated solution is developed